2,675 research outputs found

    Carbon fluxes in a mature deciduous forest under elevated CO₂

    Get PDF
    This PhD thesis addressed several major aspects of the carbon (C) cycle in a c. 100-year-old, mixed deciduous forest under elevated CO₂ with an emphasis on below-ground processes. The aim was to assess the responses of tree fine roots and soil respiration to canopy CO₂ enrichment (? 550 ppm) in this tallest forest studied to date. Furthermore, leaf gas-exchange of the five study species was examined to ascertain the long-term response of photosynthetic carbon uptake to elevated atmospheric CO₂. Investigations at the Swiss Canopy Crane (SCC) experimental site were guided by the following key questions: (1) Does below-ground C allocation to fine root production increase in response to CO₂ enrichment in order to acquire more nutrients to match the enhanced C supply in the forest canopy? (2) Is below-ground metabolism enhanced and therefore forest soil respiration stimulated by canopy CO₂ enrichment? (3) Is leaf-level photosynthesis persistently stimulated by elevated CO₂ in this stand or had these mature broad-leaved trees reduced their carbon up- take by photosynthetic down-regulation under long-term CO₂ enrichment? Findings from earlier studies at the SCC site, including 13C isotope tracing, all point towards an in- creased flux of C through CO₂-enriched trees to the soil but neither fine root biomass nor soil respiration were stimulated by elevated CO₂. Surprisingly, fine root biomass in bulk soil and ingrowth cores showed strong reductions by ? 30% in year five and six but were unaffected in the following seventh year of CO₂ enrichment. Given the absence of a positive biomass response of fine roots, we assumed that the extra C assimilated in the CO₂-enriched forest canopy was largely respired back to the atmosphere via increases in fine root and rhizosphere respiration and the metabolization of increased root derived exudates by soil microbes. Indeed, 52% higher soil air CO₂ concentration during the growing season and 14% greater soil microbial biomass both in- dicated enhanced below-ground metabolism in soil under CO₂-enriched trees. However, this did not translate into a persistent stimulation of soil respiration. At times of high or continuous precipitation soil water savings under CO₂-exposed trees (resulting from reduced sapflow) led to excessive soil moisture (> 45 vol.-%) impeding soil gas-exchange and thus soil respiration. Depending on the interplay between soil temperature and the consistently high soil water content in this stand, instantaneous rates of soil respiration were periodically reduced or increased under elevated CO₂ but on a diel scale and integrated over the growing season soil CO₂ emissions were similar under CO₂-enriched and control trees. Soil respiration could therefore not explain the fate of the extra C. The lacking sink capacity for additional assimilates led us to assume downward adjustment of photosynthetic capacity in CO₂-enriched trees thereby reducing carbon uptake in the forest canopy. Photosynthetic acclimation cannot completely eliminate the CO₂-driven stimulation in carbon uptake, but a reduction could hamper the detection of a CO₂ effect considering the low statistical power inevitably involved with such large-scale experiments. However, after eight years of CO₂ enrichment we found sustained stimulation in leaf photosynthesis (42-49%) indicating a lack of closure in the carbon budget for this stand under elevated atmospheric CO₂

    Influence of cementless hip stems on femoral cortical strain pattern depending on their extent of porous coating

    Get PDF
    The extent of porous coating of cementless total hip stems is held responsible for radiological periprosthetic changes, the rate of thigh pain, and even its long-term success. However, there is only sparse knowledge on how the biomechanical loading conditions of the femur are influenced by the extent of porous coating in the early phase after implantation of a cementless hip stem. Aiming to evaluate the effect of surface structuring on the strain pattern of the femur, we implanted three anatomic hip stems with different extents of porous coating (full, two-thirds proximal, and penguin type) in second-generation composite femora coated with a photoelastic layer. A cortical strain mapping was conducted before and after insertion of the implants under standardized loading conditions considering relevant muscle forces. The results of the statistical analysis of three different implantation sequences proved that composite femora are suitable for repeated measurements within the applied experimental setup. Cortical strain changes including stress-shielding effects medially (-60%) and laterally (-50%) were validated with a cadaver femur. The extent of porous coating had no significant influence on the surface strain pattern for an immediate postoperative situation

    Stem cell mechanobiology

    No full text
    Stem cells are undifferentiated cells that are capable of proliferation, self-maintenance and differentiation towards specific cell phenotypes. These processes are controlled by a variety of cues including physicochemical factors associated with the specific mechanical environment in which the cells reside. The control of stem cell biology through mechanical factors remains poorly understood and is the focus of the developing field of mechanobiology. This review provides an insight into the current knowledge of the role of mechanical forces in the induction of differentiation of stem cells. While the details associated with individual studies are complex and typically associated with the stem cell type studied and model system adopted, certain key themes emerge. First, the differentiation process affects the mechanical properties of the cells and of specific subcellular components. Secondly, that stem cells are able to detect and respond to alterations in the stiffness of their surrounding microenvironment via induction of lineage-specific differentiation. Finally, the application of external mechanical forces to stem cells, transduced through a variety of mechanisms, can initiate and drive differentiation processes. The coalescence of these three key concepts permit the introduction of a new theory for the maintenance of stem cells and alternatively their differentiation via the concept of a stem cell 'mechano-niche', defined as a specific combination of cell mechanical properties, extracellular matrix stiffness and external mechanical cues conducive to the maintenance of the stem cell population.<br/

    Sustained enhancement of photosynthesis in mature deciduous forest trees after 8years of free air CO2 enrichment

    Get PDF
    Carbon uptake by forests constitutes half of the planet's terrestrial net primary production; therefore, photosynthetic responses of trees to rising atmospheric CO2 are critical to understanding the future global carbon cycle. At the Swiss Canopy Crane, we investigated gas exchange characteristics and leaf traits in five deciduous tree species during their eighth growing season under free air carbon dioxide enrichment in a 35-m tall, ca. 100-year-old mixed forest. Net photosynthesis of upper-canopy foliage was 48% (July) and 42% (September) higher in CO2-enriched trees and showed no sign of down-regulation. Elevated CO2 had no effect on carboxylation efficiency (V cmax) or maximal electron transport (J max) driving ribulose-1,5-bisphosphate (RuBP) regeneration. CO2 enrichment improved nitrogen use efficiency, but did not affect leaf nitrogen (N) concentration, leaf thickness or specific leaf area except for one species. Non-structural carbohydrates accumulated more strongly in leaves grown under elevated CO2 (largely driven by Quercus). Because leaf area index did not change, the CO2-driven stimulation of photosynthesis in these trees may persist in the upper canopy under future atmospheric CO2 concentrations without reductions in photosynthetic capacity. However, given the lack of growth stimulation, the fate of the additionally assimilated carbon remains uncertai

    Interplay of orientational order and roughness in simulated thin film growth of anisotropically interacting particles

    Full text link
    Roughness and orientational order in thin film films of anisotropic particles are investigated using kinetic Monte Carlo simulations on a cubic lattice. Anisotropic next-neighbor attractions between the lattice particles were chosen to mimic the effects of shape anisotropy in the interactions of disc- or rod-like molecules with van-der-Waals attractions. Increasing anisotropy leads first to a preferred orientation in the film (which is close to the corresponding equilibrium transition) while the qualitative mode of roughness evolution (known from isotropic systems) does not change. At strong anisotropies, a non-equilibrium roughening effect is found, accompanied by re-ordering in the film which can be interpreted as the nucleation and growth of domains of lying-down discs or rods. The information on order and roughness is combined into a diagram of dynamic growth modes.Comment: 13 pages, 19 figure

    Forensische Chemie - mit Chemie auf Verbrecherjagd : eine Einführung für den Chemieunterricht

    Get PDF
    CITIES (Chemistry and Industry for Teachers in European Schools) ist ein COMENIUS-Projekt, in dessen Rahmen Materialien für den Chemieunterricht erstellt und erprobt werden. Diese Materialien sollen Lehrkräften helfen, ihren Unterricht attraktiver zu gestalten, indem der Bezug sowohl zum Alltag und der Lebenswelt als auch zur chemischen Industrie aufgezeigt wird. Forensische Chemie Aber was kann Schülerinnen und Schüler faszinieren? Nicht nur Erwachsene, auch Heranwachsende lösen gerne Rätsel, besonders wenn es sich um die Aufklärung von Kriminalfällen handelt. Nicht umsonst spielen Kriminalromane sowie Filme und Fernsehsendungen, die sich mit solchen Themen beschäftigen, eine große Rolle in der Unterhaltungsindustrie. Das angesprochene Interesse kann genutzt werden: Bei der Sicherung und dem Nachweis von Spuren werden häufig chemische Verfahren eingesetzt, von denen eine ganze Reihe einfach auch im Schulexperiment nachvollzogen werden kann. Es war deshalb naheliegend, die Forensische Chemie als einen Themenschwerpunkt des Moduls zu wählen. Folgende Materialien wurden zusammengestellt: 1. Eine Einführung in die Forensische Chemie dient zur Vorbereitung des Unterrichts und führt in eine Auswahl von Methoden der Spurensicherung und des Spurennachweises ein. 2. Eine Sammlung von einfachen Versuchen zur Forensischen Chemie vermittelt einen praktischen Zugang zu diesem Thema mit einfachen Mitteln. 3. Die Darstellung eines Kriminalfalles, zu dessen Lösung chemisches Wissen eine große Rolle spielt, eröffnet die Möglichkeit, auf spannende Weise Inhalte zu wiederholen und zu vertiefen. s.a. URN: urn:nbn:de:hebis:30-86529 ; URL: http://publikationen.ub.uni-frankfurt.de/volltexte/2010/8652/ 4. In einem weiteren Beispiele wird die Methode des Gruppenpuzzles eingesetzt. Auch hier müssen die Schülerinnen und Schüler einen Kriminalfall lösen, wobei unterschiedliche Methoden, Fingerabdrücke sichtbar zu machen, sowie Gipsabdrücke, ein Blutnachweis und - theoretisch - die Elektrophorese zum Einsatz kommen. s.a. URN: urn:nbn:de:hebis:30-86539 ; URL: http://publikationen.ub.uni-frankfurt.de/volltexte/2010/8653/ 5. Eine kurze Einführung in die Forensische Chemie wird zusätzlich in Form eines Lernprogramms angeboten. Das Lernprogramm „Forensische Chemie - Mit Chemie auf Verbrecherjagd" fasst die wichtigsten Inhalte des Unterrichtmaterials zu 1. - 4. kurz und seitenorientiert zusammen. Das Programm bietet Ihnen neben einer individuellen und nutzerzentrierten Navigation über das angezeigte Pfeilkreuz die Möglichkeit, zwischendurch immer wieder Ihr Wissen zu überprüfen. Die Inhalte werden in jedem gängigen WebBrowser angezeigt. http://cities.eu.org/lernbar/index.htm Die unter den Punkten 1 und 2 aufgeführten Materialien können die Grundlage für einen längeren Kurs sein, oder es können einzelne Aspekte im Zusammenhang mit anderen Themen des Chemieunterrichts erarbeitet werden. Ein Beispiel ist die Verwendung von Cyanacrylat zum Nachweis von Fingerabdrücken. Dieser Inhalt lässt sich sowohl im größeren Zusammenhang der Forensischen Chemie behandeln als auch im Rahmen der Chemie der Kunststoffe

    The use of trade secrets to protect data shared between firms in agricultural and food sectors

    Get PDF
    Both public policy and business management are increasingly interested in how to manage trade secrets. One of the driving forces is the growing significance of data as an asset, as ‘oil of the 21st century'. Trade secrets are often seen as the major Intellectual Property (IP) tool for protecting data. There is also the understanding that the need to share data is increasing to allow for new types of innovation. This paper seeks to understand how data sharing practices and the use of trade secrets are evolving in the agricultural industries. Using explorative empirical data from four in-depth case studies, the paper develops a framework for data sharing practices, value sharing, and trade secrets use. We find that current data sharing practices pool around two scenarios, where data is not shared or shared only with limited partners (hence closed) and there are differences whether value created from the data is shared. We conclude that a nuanced view on the use of trade secrets in data sharing is mandated for both IP/data managers and scholars analysing the topic

    Retrograde transport of CDMPR depends on several machineries as analyzed by sulfatable nanobodies

    Get PDF
    Retrograde protein transport from the cell surface and endosomes to the TGN is essential for membrane homeostasis in general and for the recycling of mannose-6-phosphate receptors (MPRs) for sorting of lysosomal hydrolases in particular. We used a nanobody-based sulfation tool to more directly determine transport kinetics from the plasma membrane to the TGN for the cation-dependent MPR (CDMPR) with and without rapid or gradual inactivation of candidate machinery proteins. Although knockdown of retromer (Vps26), epsinR, or Rab9a reduced CDMPR arrival to the TGN, no effect was observed upon silencing of TIP47. Strikingly, when retrograde transport was analyzed by rapamycin-induced rapid depletion (knocksideways) or long-term depletion by knockdown of the clathrin adaptor AP-1 or of the GGA machinery, distinct phenotypes in sulfation kinetics were observed, suggesting a potential role of GGA adaptors in retrograde and anterograde transport. Our study illustrates the usefulness of derivatized, sulfation-competent nanobodies, reveals novel insights into CDMPR trafficking biology, and further outlines that the selection of machinery inactivation is critical for phenotype analysis
    corecore